Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. biol ; 83: 1-8, 2023. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468837

RESUMO

Endophytic bacteria serve key roles in the maintenance of plant health and growth. Few studies to date, however, have explored the antagonistic and plant growth-promoting (PGP) properties of Prunus cerasifera endophytes. To that end, we isolated endophytic bacteria from P. cerasifera tissue samples and used a dual culture plate assay to screen these microbes for antagonistic activity against Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum, and F. moniliforme. Of the 36 strains of isolated bacteria, four (strains P1, P10, P16, and P20) exhibited antagonistic effects against all five model pathogens, and the P10 strain exhibited the strongest antagonistic to five pathogens. This P10 strain was then characterized in-depth via phenotypic assessments, physiological analyses, and 16s rDNA sequencing, revealing it to be a strain of Bacillus subtilis. Application of a P10 cell suspension (1×108 CFU/mL) significantly enhanced the seed germination and seedling growth of tomato in a greenhouse setting. This P10 strain further significantly suppressed tomato Verticillium wilt with much lower disease incidence and disease index scores being observed following P10 treatment relative to untreated plants in pot-based experiments. Tomato plants that had been treated with strain P10 also enhanced defense-related enzymes, peroxidase, superoxide dismutase, and catalase activity upon V. dahliae challenge relative to plants that had not been treated with this endophytic bacterium. The results revealed that the P10 bacterial strain has potential value as a biocontrol agent for use in the prevention of tomato Verticillium wilt.


As bactérias endofíticas desempenham papel fundamental na manutenção da saúde e do crescimento das plantas. Poucos estudos até o momento, no entanto, exploraram as propriedades antagônicas e promotoras de crescimento de plantas (PGP) de endófitos de Prunus cerasifera. Para esse fim, isolamos bactérias endofíticas de amostras de tecido de P. cerasifera e usamos um ensaio de placa de cultura dupla para rastrear esses micróbios quanto à atividade antagonista contra Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum e F. moniliforme. Das 36 cepas de bactérias isoladas, quatro (cepas P1, P10, P16 e P20) exibiram efeitos antagônicos contra todos os cinco patógenos modelo, e a cepa P10 exibiu o antagonista mais forte para cinco patógenos. Essa cepa P10 foi então caracterizada em profundidade por meio de avaliações fenotípicas, análises fisiológicas e sequenciamento de rDNA 16s, revelando ser uma cepa de Bacillus subtilis. A aplicação de uma suspensão de células P10 (1 × 108 UFC / mL) aumentou significativamente a germinação das sementes e o crescimento das mudas de tomate em casa de vegetação. Essa cepa P10 suprimiu ainda mais a murcha de Verticillium do tomate com incidência de doença muito menor e pontuações de índice de doença sendo observadas após o tratamento com P10 em relação a plantas não tratadas em experimentos baseados em vasos. As plantas de tomate que foram tratadas com a cepa P10 também aumentaram as enzimas relacionadas à defesa, peroxidase, superóxido dismutase e atividade da catalase após o desafio de V. dahliae em relação às plantas que não foram tratadas com essa bactéria endofítica. Os resultados revelaram que a cepa bacteriana P10 tem valor potencial como agente de biocontrole para uso na prevenção da murcha de Verticillium em tomate.


Assuntos
Bacillus subtilis/fisiologia , Bacillus subtilis/genética , Endófitos/isolamento & purificação , Fusarium/patogenicidade , Prunus/microbiologia , Verticillium/patogenicidade
2.
Mol Plant Pathol ; 22(9): 1092-1108, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245085

RESUMO

The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following V. dahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more O2- and less H2 O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of V. dahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in V. dahliae.


Assuntos
Gossypium/microbiologia , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Verticillium , Verticillium/enzimologia , Verticillium/patogenicidade , Virulência , Zinco
3.
Int J Mol Sci ; 21(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317090

RESUMO

Defensins are small and rather ubiquitous cysteine-rich anti-microbial peptides. These proteins may act against pathogenic microorganisms either directly (by binding and disrupting membranes) or indirectly (as signaling molecules that participate in the organization of the cellular defense). Even though defensins are widespread across eukaryotes, still, extensive nucleotide and amino acid dissimilarities hamper the elucidation of their response to stimuli and mode of function. In the current study, we screened the Solanum lycopersicum genome for the identification of defensin genes, predicted the relating protein structures, and further studied their transcriptional responses to biotic (Verticillium dahliae, Meloidogyne javanica, Cucumber Mosaic Virus, and Potato Virus Y infections) and abiotic (cold stress) stimuli. Tomato defensin sequences were classified into two groups (C8 and C12). Our data indicate that the transcription of defensin coding genes primarily depends on the specific pathogen recognition patterns of V. dahliae and M. javanica. The immunodetection of plant defensin 1 protein was achieved only in the roots of plants inoculated with V. dahliae. In contrast, the almost null effects of viral infections and cold stress, and the failure to substantially induce the gene transcription suggest that these factors are probably not primarily targeted by the tomato defensin network.


Assuntos
Defensinas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Animais , Resposta ao Choque Frio , Defensinas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , Proteínas de Plantas/metabolismo , Ativação Transcricional , Tylenchoidea/patogenicidade , Verticillium/patogenicidade
4.
Int J Mol Sci ; 21(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085660

RESUMO

Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.


Assuntos
Vias Biossintéticas , Reparo do DNA , Proteínas Fúngicas/metabolismo , Pirimidinas/biossíntese , Verticillium/metabolismo , Verticillium/patogenicidade , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Reparo do DNA/efeitos dos fármacos , Fluorescência , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Mutação/genética , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Tiamina/farmacologia , Nicotiana/microbiologia , Raios Ultravioleta , Verticillium/efeitos dos fármacos , Verticillium/crescimento & desenvolvimento , Virulência/efeitos dos fármacos , Virulência/genética , Virulência/efeitos da radiação
5.
Genes (Basel) ; 10(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717226

RESUMO

Verticillium wilt that is caused by Verticillium dahliae, does result in massive annual yield losses and fiber quality decline in cotton. Control by conventional mechanisms is not possible due to a wide host range and the longevity of dormant fungi in the soil in the case of absence of a suitable host. Plants have developed various mechanisms to boost their immunity against various diseases, and one is through the induction of various genes. In this research, we carried out RNA sequencing and then identified the members of the adenosine triphosphate (ATP)-binding cassette (ABC) proteins to be critical in enhancing resistance to V. dahliae infection. A total of 166 proteins that are encoded by the ABC genes were identified in Gossypium raimondii with varying physiochemical properties. A novel ABC gene, Gorai.007G244600 (ABCF5), was found to be highly upregulated, and its homolog in the tetraploid cotton Gh_D11G3432 (ABCF5), was then silenced through virus induced gene silencing (VIGS) in G. hirsutum, tetraploid upland cotton. The mutant cotton seedlings ability to tolerate V. dahliae infection was significantly reduced. Based on the evaluation of oxidant enzymes, hydrogen peroxide (H2O2) and malondialdehyde (MDA) showed significantly increased levels in the leaves of the mutant compared to the wild type. In addition, antioxidant enzymes, peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) concentrations were reduced in the mutant cotton leaves after treatment with V. dahliae fungi as compared to the wild type. Moreover, expression levels of the biotic stress genes, cotton polyamine oxidase (GhPAO), cotton ribosomal protein L18 (GhRPL18), and cotton polygalacturonase-inhibiting protein-1 (GhPGIP1), were all downregulated in the mutant but they were highly upregulated in the various tissues of the wild cotton seedlings. This research has shown that ABC genes could play an important role in enhancing the immunity of cotton to V. dahliae infection, and thus can be explored in developing more resilient cotton genotypes with improved resistance to V. dahliae infection in cotton.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Resistência à Doença , Gossypium/genética , Proteínas de Plantas/genética , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/metabolismo , Catalase/metabolismo , Inativação Gênica , Gossypium/imunologia , Gossypium/microbiologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Verticillium/patogenicidade , Poliamina Oxidase
6.
BMC Plant Biol ; 19(1): 19, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634907

RESUMO

BACKGROUND: Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS: In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS: This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.


Assuntos
Cromossomos de Plantas/genética , Gossypium/genética , Gossypium/microbiologia , Transcriptoma/genética , Verticillium/patogenicidade , Regulação da Expressão Gênica de Plantas/genética
7.
J Exp Bot ; 70(2): 613-626, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30295911

RESUMO

Alt a 1 family proteins (AA1s) have only been observed in the Dothideomycetes and Sordariomycetes classes of fungi, and their biological functions have remained poorly understood. Verticillium dahliae, a soil-borne pathogen that causes plant wilt disease, secretes hundreds of proteins during the process of pathogenic infection, including the AA1 member PevD1. In this study, we found that the pevd1 transcript was present in all of the hosts studied (cotton, Arabidopsis, tomato, and tobacco) and showed elevated expression throughout the infection process. Furthermore, pevd1 knockout mutants displayed attenuated pathogenicity compared with the wild-type (WT) strain and complemented strains in hosts. A partner protein of PevD1, pathogenesis-related protein 5 (PR5)-like protein GhPR5, was isolated from cotton (Gossypium hirsutum) plants by co-purification assays, and the PevD1-GhPR5 interaction was determined to be localized in the C-terminus (PevD1b, amino acids residues 113-155) by pull-down and yeast two-hybrid techniques. Re-introduction of the pevd1b gene into a pevd1 knockout mutant resulted in restoration of the virulence phenotype to WT levels. In addition, PevD1b, which is similar to PevD1, decreased the antifungal activity of GhPR5 in vitro. Our findings reveal an infection strategy in which V. dahliae secretes PevD1 to inhibit GhPR5 antifungal activity in order to overcome the host defence system.


Assuntos
Gossypium/microbiologia , Interações Hospedeiro-Patógeno , Verticillium/fisiologia , Sequência de Aminoácidos , Resistência à Doença , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Doenças das Plantas , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Verticillium/patogenicidade
8.
Mol Plant Pathol ; 20(3): 323-333, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30341832

RESUMO

The soil-borne vascular pathogen Verticillium dahliae infects many dicotyledonous plants to cause devastating wilt diseases. During colonization, V. dahliae spores develop hyphae surrounding the roots. Only a few hyphae that adhere tightly to the root surface form hyphopodia at the infection site, which further differentiate into penetration pegs to facilitate infection. The molecular mechanisms controlling hyphopodium formation in V. dahliae remain unclear. Here, we uncovered a cellophane surface-induced gene (VdCSIN1) as a regulator of V. dahliae hyphopodium formation and pathogenesis. Deletion of VdCSIN1 compromises hyphopodium formation, hyphal development and pathogenesis. Exogenous application of cyclic adenosine monophosphate (cAMP) degradation inhibitor or disruption of the cAMP phosphodiesterase gene (VdPDEH) partially restores hyphopodium formation in the VdΔcsin1 mutant. Moreover, deletion of VdPDEH partially restores the pathogenesis of the VdΔcsin1 mutant. These findings indicate that VdCSIN1 regulates hyphopodium formation via cAMP-mediated signalling to promote host colonization by V. dahliae.


Assuntos
AMP Cíclico/farmacologia , Doenças das Plantas/microbiologia , Verticillium/metabolismo , Verticillium/patogenicidade , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Plant J ; 98(2): 213-227, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30561788

RESUMO

As the largest cultivated fiber crop in the world, cotton (Gossypium hirsutum) is often exposed to various biotic stresses during its growth periods. Verticillium wilt caused by Verticillium dahliae is a severe disease in cotton, and the molecular mechanism of cotton resistance for Verticillium wilt needs to be further investigated. Here, we revealed that the cotton genome contains nine types of GST genes. An evolutionary analysis showed that a newly identified cluster (including Gh_A09G1508, Gh_A09G1509 and Gh_A09G1510) located on chromosome 09 of the A-subgenome was under positive selection pressure during the formation of an allotetraploid. Transcriptome analysis showed that this cluster participates in Verticillium wilt resistance. Because the Gh_A09G1509 gene showed the greatest differential expression in the resistant cultivar under V. dahliae stress, we overexpressed this gene in tobacco and found that its overexpression resulted in enhanced Verticillium wilt resistance. Suppression of the gene cluster via virus-induced gene silencing made cotton plants of the resistant cultivar Nongda601 significantly susceptible. These results demonstrated that the GST cluster played an important role in Verticillium wilt resistance. Further investigation showed that the encoded enzymes of the cluster were essential for the delicate equilibrium between the production and scavenging of H2 O2 during V. dahliae stress.


Assuntos
Resistência à Doença/genética , Glutationa Transferase/genética , Gossypium/genética , Família Multigênica/genética , Doenças das Plantas/microbiologia , Verticillium/patogenicidade , Arabidopsis/genética , Cacau/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta/genética , Glutationa Transferase/classificação , Peróxido de Hidrogênio/metabolismo , Vitis/genética
10.
mSphere ; 3(5)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185514

RESUMO

Iron homeostasis is essential for full virulence and viability in many pathogenic fungi. Here, we showed that the bZip transcription factor VdHapX functions as a key regulator of iron homeostasis for adaptation to iron-depleted and iron-excess conditions and is required for full virulence in the vascular wilt fungus, Verticillium dahliae Deletion of VdHapX impaired mycelial growth and conidiation under both iron starvation and iron sufficiency. Furthermore, disruption of VdHapX led to decreased formation of the long-lived survival structures of V. dahliae, known as microsclerotia. Expression of genes involved in iron utilization pathways and siderophore biosynthesis was misregulated in the ΔVdHapX strain under the iron-depleted condition. Additionally, the ΔVdHapX strain exhibited increased sensitivity to high iron concentrations and H2O2, indicating that VdHapX also contributes to iron or H2O2 detoxification. The ΔVdHapX strain showed a strong reduction in virulence on smoke tree seedlings (Cotinus coggygria) and was delayed in its ability to penetrate plant epidermal tissue.IMPORTANCE This study demonstrated that VdHapX is a conserved protein that mediates adaptation to iron starvation and excesses, affects microsclerotium formation, and is crucial for virulence of V. dahliae.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Verticillium/patogenicidade , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Homeostase , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Sideróforos/metabolismo , Esporos Fúngicos/genética , Verticillium/genética , Virulência
11.
Mol Plant Pathol ; 19(1): 59-76, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696683

RESUMO

Plant pathogens of the genus Verticillium pose a threat to many important crops worldwide. They are soil-borne fungi which invade the plant systemically, causing wilt symptoms. We functionally characterized the APSES family transcription factor Vst1 in two Verticillium species, V. dahliae and V. nonalfalfae, which produce microsclerotia and melanized hyphae as resistant structures, respectively. We found that, in V. dahliae Δvst1 strains, microsclerotium biogenesis stalled after an initial swelling of hyphal cells and cultures were never pigmented. In V. nonalfalfae Δvst1, melanized hyphae were also absent. These results suggest that Vst1 controls melanin biosynthesis independent of its role in morphogenesis. The absence of vst1 also had a great impact on sporulation in both species, affecting the generation of the characteristic verticillate conidiophore structure and sporulation rates in liquid medium. In contrast with these key roles in development, Vst1 activity was dispensable for virulence. We performed a microarray analysis comparing global transcription patterns of wild-type and Δvst1 in V. dahliae. G-protein/cyclic adenosine monophosphate (G-protein/cAMP) signalling and mitogen-activated protein kinase (MAPK) cascades are known to regulate fungal morphogenesis and virulence. The microarray analysis revealed a negative interaction of Vst1 with G-protein/cAMP signalling and a positive interaction with MAPK signalling. This analysis also identified Rho signalling as a potential regulator of morphogenesis in V. dahliae, positively interacting with Vst1. Furthermore, it exposed the association of secondary metabolism and development in this species, identifying Vst1 as a potential co-regulator of both processes. Characterization of the putative Vst1 targets identified in this study will aid in the dissection of specific aspects of development.


Assuntos
Proteínas Fúngicas/metabolismo , Micélio/metabolismo , Fatores de Transcrição/metabolismo , Verticillium/crescimento & desenvolvimento , Verticillium/metabolismo , Regulação para Baixo/genética , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Melaninas/biossíntese , Morfogênese/genética , Família Multigênica , Micélio/citologia , Oxirredução , Metabolismo Secundário/genética , Transdução de Sinais/genética , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia , Transcrição Gênica , Verticillium/patogenicidade
12.
Plant Biotechnol J ; 16(2): 638-648, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28796297

RESUMO

Verticillium wilts caused by soilborne fungal species of the Verticillium genus are economically important plant diseases that affect a wide range of host plants and are notoriously difficult to combat. Perception of pathogen(-induced) ligands by plant immune receptors is a key component of plant innate immunity. In tomato, race-specific resistance to Verticillium wilt is governed by the cell surface-localized immune receptor Ve1 through recognition of the effector protein Ave1 that is secreted by race 1 strains of Verticillium spp. It was previously demonstrated that transgenic expression of tomato Ve1 in the model plant Arabidopsis thaliana leads to Verticillium wilt resistance. Here, we investigated whether tomato Ve1 can confer Verticillium resistance when expressed in the crop species tobacco (Nicotiana tabcum) and cotton (Gossypium hirsutum). We show that transgenic tobacco and cotton plants constitutively expressing tomato Ve1 exhibit enhanced resistance against Verticillium wilt in an Ave1-dependent manner. Thus, we demonstrate that the functionality of tomato Ve1 in Verticillium wilt resistance through recognition of the Verticillium effector Ave1 is retained after transfer to tobacco and cotton, implying that the Ve1-mediated immune signalling pathway is evolutionary conserved across these plant species. Moreover, our results suggest that transfer of tomato Ve1 across sexually incompatible plant species can be exploited in breeding programmes to engineer Verticillium wilt resistance.


Assuntos
Nicotiana/imunologia , Nicotiana/metabolismo , Solanum lycopersicum/metabolismo , Verticillium/patogenicidade , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
13.
Curr Genet ; 64(3): 645-659, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29177887

RESUMO

Ferric reductases are integral membrane proteins involved in the reduction of environmental ferric iron into the biologically available ferrous iron. In the most overwhelming phytopathogenic fungus, Verticillium dahliae, these ferric reductase are not studied in details. In this study we explored the role of FreB gene (VDAG_06616) in the ferric reduction and virulence of V. dahliae by generating the knockout mutants (ΔFreB) and complementary strains (ΔFreB-C) using protoplast transformation. When cultured on media supplemented with FeSO4, FeCl3 and no iron, ΔFreB exhibited significantly reduced growth and spore production especially on media with no iron. Transmembrane ferric reductase activity of ΔFreB was decreased up to 50% than wild type strains (Vd-wt). The activity was fully restored in ΔFreB-C. Meanwhile, the expression levels of other related genes (Frect-4, Frect-5, Frect-6 and Met) were obviously increased in ΔFreB. Compared with the Vd-wt and ΔFreB-C, ΔFreB-1 and ΔFreB-2 were impaired in colony diameter and spore number on different carbon sources (starch, sucrose, galactose and xylose). ΔFreB-1 and ΔFreB-2 were also highly sensitive to oxidative stress as revealed by the plate diffusion assay when 100 µM H2O2 was applied to the fungal culture. When Nicotiana benthamiana plants were inoculated, ΔFreB exhibited less disease symptoms than Vd-wt and ΔFreB-C. In conclusion, the present findings not only indicate that FreB mediates the ferric metabolism and is required for the full virulence in V. dahliae, but would also accelerate future investigation to uncover the pathogenic mechanism of this fungus.


Assuntos
Compostos Férricos/metabolismo , Proteínas Fúngicas/metabolismo , Verticillium/metabolismo , Adaptação Fisiológica , Carbono/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Teste de Complementação Genética , Estresse Oxidativo , Filogenia , Verticillium/genética , Verticillium/crescimento & desenvolvimento , Verticillium/patogenicidade , Virulência
14.
Mol Plant Microbe Interact ; 31(2): 260-273, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29068240

RESUMO

Cutinases have been implicated as important enzymes during the process of fungal infection of aerial plant organs. The function of cutinases in the disease cycle of fungal pathogens that invade plants through the roots has been less studied. Here, functional analysis of 13 cutinase (carbohydrate esterase family 5 domain-containing) genes (VdCUTs) in the highly virulent vascular wilt pathogen Verticillium dahliae Vd991 was performed. Significant sequence divergence in cutinase family members was observed in the genome of V. dahliae Vd991. Functional analyses demonstrated that only VdCUT11, as purified protein, induced cell death and triggered defense responses in Nicotiana benthamiana, cotton, and tomato plants. Virus-induced gene silencing showed that VdCUT11 induces plant defense responses in Nicotiana benthamania in a BAK1 and SOBIR-dependent manner. Furthermore, coinfiltration assays revealed that the carbohydrate-binding module family 1 protein (VdCBM1) suppressed VdCUT11-induced cell death and other defense responses in N. benthamiana. Targeted deletion of VdCUT11 in V. dahliae significantly compromised virulence on cotton plants. The cutinase VdCUT11 is an important secreted enzyme and virulence factor that elicits plant defense responses in the absence of VdCBM1.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Gossypium/imunologia , Gossypium/microbiologia , Verticillium/enzimologia , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Nicotiana , Verticillium/metabolismo , Verticillium/patogenicidade , Virulência
15.
Curr Genet ; 64(1): 235-246, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28798981

RESUMO

Verticillium dahliae is the most overwhelming plant pathogen, causing Verticillium wilt in a number of economic crops. The molecular mechanism is still unclear and identification of the genes involved in the pathogenicity or virulence of this fungus would benefit to uncover such mechanism. STT3 is a catalytic subunit of the multi-subunit oligosaccharyl transferase (OST) and plays an essential role in glycoprotein modification. Here, we characterized STT3 gene (VDAG_03232.1) of V. dahliae to explore its regulatory role in the development and virulence by deletion and complementation of this gene, as well as its silence in transgenic plants. The expression of the STT3 gene increased at the stage of conidia germination and reached its peak level with germ tube formation and elongation. We generated the knockout mutants (ΔSTT3) using protoplast transformation. Mycelial growth, sporulation ability and glycoprotein secretion were impaired when ΔSTT3 mutants were grown on media supplemented with different carbon sources. Moreover, ΔSTT3 mutants exhibited distinctly decreased germination ratio and reduction in virulence compared with the wild type (Vd wt) and complementary (ΔSTT3-C) strains. We also generated transgenic Nicotiana benthamiana (Trans-1 and -2) plants by expressing dsRNA against the STT3 gene. Transgenic plants showed significant reduction in the disease index and fungal biomass resulting in elevated resistance to V. dahliae compared with the wild-type plants when inoculated with Vd wt. Our results indicated that STT3 mediates the full virulence through the regulation in fungal development, hyphal growth, glycoprotein secretion of V. dahliae and merits further study as a potential RNAi target to control this fungus.


Assuntos
Hexosiltransferases/metabolismo , Subunidades Proteicas/metabolismo , Verticillium/fisiologia , Carbono/metabolismo , Hexosiltransferases/química , Hexosiltransferases/genética , Mutação , Fenótipo , Doenças das Plantas/microbiologia , Plantas/microbiologia , Subunidades Proteicas/genética , Análise de Sequência de DNA , Verticillium/patogenicidade , Virulência/genética
16.
Fungal Genet Biol ; 108: 26-35, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28917999

RESUMO

The fungus Verticillium dahliae causes vascular wilt disease on various plant species resulting in devastating yield losses worldwide. The capacity of V. dahliae to colonize in host plant xylem and disseminate by microsclerotia has led to studies to evaluate genes associated with pathogenesis and microsclerotia formation. Here, we identified and characterized a V. dahliae homolog to Skn7, a two-component stress response regulator of Saccharomyces cerevisiae. Results showed that melanized microsclerotia formation and conidiation were significantly inhibited in the VdSkn7 deletion mutants. VdSkn7-deficient mutants displayed severe growth defect under heat shock, cell wall perturbing agents and H2O2, and were significantly less virulent but were not sensitive to osmotic stresses compared to the wild-type strain. Finally, we demonstrated that VdSkn7 is required for the plant penetration. Taken together, our study thus provides new evidence on the functional conservation and divergence of Skn7 orthologs among fungal organisms and indicates that VdSkn7 contributes to microsclerotial development, virulence and stress response of V. dahliae.


Assuntos
Genes Fúngicos , Verticillium/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Deleção de Genes , Resposta ao Choque Térmico , Peróxido de Hidrogênio/farmacologia , Mutagênese , Doenças das Plantas/microbiologia , Transdução de Sinais , Esporos Fúngicos , Nicotiana/microbiologia , Verticillium/efeitos dos fármacos , Verticillium/patogenicidade , Verticillium/fisiologia , Virulência
17.
Sci China Life Sci ; 60(8): 852-860, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755291

RESUMO

Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. Taking advantage of cotton (Gossypium hirsutum) genome, we discovered pathogenesis-related (PR) gene families, which have been widely used as markers of immune responses in plants. To profile the expression of G. hirsutum PR genes in the process of plant immunity, we treated cotton roots with two immunogenic peptides, flg22 and nlp20 known as pathogen-associated molecular patterns, as well as three Verticillium dahliae-derived peptides, nlp20Vd2, nlp23Vd3, and nlp23Vd4 which are highly identical to nlp20. Quantitative real-time PCR results revealed that 14 G. hirsutum PR gene (GhPR) families were induced or suppressed independently in response to flg22, nlp20, nlp20Vd2, nlp23Vd3, and nlp23Vd4. Most GhPR genes are expressed highest at 3 h post incubation of immunogenic peptides. Compared to flg22 and nlp20, nlp20Vd2 is more effective to trigger up-regulated expression of GhPR genes. Notably, both nlp23Vd3 and nlp23Vd4 are able to induce GhPR gene up-regulation, although they do not induce necrosis on cotton leaves. Thus, our results provide marker genes and new immunogenic peptides for further investigation of cotton-V. dahliae interaction.


Assuntos
Gossypium/microbiologia , Moléculas com Motivos Associados a Patógenos/imunologia , Verticillium/patogenicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Gossypium/imunologia , Gossypium/metabolismo , Interações Hospedeiro-Patógeno , Peptídeos/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Verticillium/metabolismo
18.
Mol Biotechnol ; 59(7): 241-250, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28567686

RESUMO

A Tobacco rattle virus (TRV)-based virus-induced gene silencing assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of the Enoyl-CoA reductase (GhECR) gene in pathogen defense. Amino acid sequence alignment of Arabidopsis ECR with homologous sequence from G. hirsutum, G. arboreum, G. herbaceum and G. barbadense showed that ECRs are highly conserved among these species. TRV-based silencing of GhECR gene in G. hirsutum induced a cell death/necrotic lesion-like phenotype. Reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative PCR showed reduced GhECR mRNA levels in TRV inoculated plants. Three isolates of Verticillium dahliae (V. dahliae) and Fusarium oxysporum f. sp. vasinfectum (FOV) were used to infect GhECR-silenced plants. Out of 6 races of 2 pathogens, down regulation of GhECR gene resulted in reduced resistance. This is the first report showing that cotton GhECR gene is involved in resistance to different strains of V. dahliae and FOV.


Assuntos
Resistência à Doença , Ácidos Graxos Dessaturases/genética , Gossypium/enzimologia , Vírus de Plantas/genética , Sequência de Aminoácidos , Ácidos Graxos Dessaturases/metabolismo , Fusarium/patogenicidade , Inativação Gênica , Vetores Genéticos/fisiologia , Gossypium/genética , Gossypium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Verticillium/patogenicidade
19.
New Phytol ; 215(1): 368-381, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28407259

RESUMO

Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection.


Assuntos
Núcleo Celular/metabolismo , Proteínas Fúngicas/fisiologia , Doenças das Plantas/microbiologia , Verticillium/patogenicidade , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Imunidade Vegetal , Espécies Reativas de Oxigênio/metabolismo , Verticillium/metabolismo
20.
Environ Microbiol ; 19(5): 1914-1932, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28205292

RESUMO

Glycoside hydrolase 12 (GH12) proteins act as virulence factors and pathogen-associated molecular patterns (PAMPs) in oomycetes. However, the pathogenic mechanisms of fungal GH12 proteins have not been characterized. In this study, we demonstrated that two of the six GH12 proteins produced by the fungus Verticillium dahliae Vd991, VdEG1 and VdEG3 acted as PAMPs to trigger cell death and PAMP-triggered immunity (PTI) independent of their enzymatic activity in Nicotiana benthamiana. A 63-amino-acid peptide of VdEG3 was sufficient for cell death-inducing activity, but this was not the case for the corresponding peptide of VdEG1. Further study indicated that VdEG1 and VdEG3 trigger PTI in different ways: BAK1 is required for VdEG1- and VdEG3-triggered immunity, while SOBIR1 is specifically required for VdEG1-triggered immunity in N. benthamiana. Unlike oomycetes, which employ RXLR effectors to suppress host immunity, a carbohydrate-binding module family 1 (CBM1) protein domain suppressed GH12 protein-induced cell death. Furthermore, during infection of N. benthamiana and cotton, VdEG1 and VdEG3 acted as PAMPs and virulence factors, respectively indicative of host-dependent molecular functions. These results suggest that VdEG1 and VdEG3 associate differently with BAK1 and SOBIR1 receptor-like kinases to trigger immunity in N. benthamiana, and together with CBM1-containing proteins manipulate plant immunity.


Assuntos
Glicosídeo Hidrolases/metabolismo , Gossypium/microbiologia , Nicotiana/microbiologia , Imunidade Vegetal/fisiologia , Receptores de Superfície Celular/metabolismo , Verticillium/patogenicidade , Morte Celular , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Verticillium/metabolismo , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA